SYNTHESIS OF SYMMETRICAL/UNSYMMETRICAL 1-ALKYL-2-((1 -(1-ALKYL-1H-BENZIMIDAZOL-2-YL)ETHYL)THIO)METHYL)-1H-BENZIMIDAZOLE OF POTENTIAL PHARMACOLOGICAL INTEREST

S. Srinivas Rao*, Ch. Venkata Ramana Reddy \& P .K. Dubey
Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering, Kukatpally, Hyderabad (A.P.), India - 500085. E-mail: seenu604@gmail.com

Abstract

2-(1-chloroethyl)-1H-benzimidazole 1a on condensation with 2-thiomethylbenzimidazole $\mathbf{2 a}$ in methanol using triethylamine as a base under reflux for 3 hr yielded 2-((1-(1H-benzimidazol-2-yl)ethyl)thiomethyl)- 1 H -benzimidazole 3a which on alkylation using two equivalents of alkylating agent under PTC conditions gave $\mathrm{N}, \mathrm{N}^{1}$-dialkylbisbenzimidazolesulphides 3b-e. Using this synthetic strategy, N, N^{1} - unsymmetricallydialkylbisbenzimidazolesulphides $\mathbf{3 f}-\mathbf{q}$ were prepared by condensing 2-(1-chloroethyl)-1H-benzimidazole $\mathbf{1 a}$ with N^{1}-alkyl-2thiomethylbenzimidazole 2b-e to obtain $\mathbf{3}$ followed by alkylation under PTC conditions.

Keywords: 2-thiomethylbenzimidazole, 2-(1-chloroethyl)-1-alkyl-1H-benzimidazole, $\mathrm{K}_{2} \mathrm{CO}_{3}$, triethylamine, bisbenzimidazolesulphides.

INTRODUCTION

Benzimidazoles and pyrazoles are important moieties in various natural and synthetic compounds and also in medicinal chemistry ${ }^{\text {I-IV }}$. Benzimidazole derivatives themselves play an important role with diverse types of pharmacological activities ${ }^{\text {V-VIII }}$.

Abele et al reported ${ }^{\mathrm{IX}}$ that the reaction of 2-mercaptobenzimidazole with bis(chloromethyl)dimethylsilane in the two-phase catalytic system of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$-18-crown-6toluene gave tricyclic benzimidazole sulfides in 56 and 92% yields. Cecil et al studied ${ }^{\mathrm{X}}$ that the presence of a sulfur atom as a sulfide in drugs provides a greater stability to the three dimensional structure of the molecule. It is also reported that benzimidazole sulphide is capable of inhibiting gastric acid ${ }^{\mathrm{XI}}$ secretion in vivo. So in this connection, herein is reported the synthesis of sulphur containing benzimidazoles, more specifically those of unsymmetrical bisbenzimidazole sulphides, which are the heterocyclic deoxy analogues of the well-known anti-ulcer agent and the proton pump inhibitor-Omeprazole ${ }^{\text {XII }}$.

RESULTS AND DISCUSSION

2-(1-chloroethyl)-1H-benzimidazole 1a (i.e., $1, \quad \mathrm{R}=\mathrm{H})$ on Condensation with 2thiomethylbenzimidazole 2a in methanol using triethylamine (TEA) as a base under reflux for 3 hr gave 2-((1-(1H-benzimidazol-2-yl)ethyl)thio)-1H-benzimidazole 3a. 3a on methylation using two equivalents of dimethylsulphate in dimethylformamide (DMF) as a solvent and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base using tetrabutylammonium bromide (TBAB) as phase transfer catalyst (PTC) at RT for 3 hr gave $\mathrm{N}, \mathrm{N}^{1}$ - dimethylbisbenzimidazolesulphide $\mathbf{3 b}$. Using this strategy, the reactions of 3a was also performed with two equivalents of each of diethyl sulphate, benzyl chloride and n-butyl bromide to obtain $\mathrm{N}, \mathrm{N}^{1}$-diethylbisbenzimidazolesulphide $\mathbf{3 c}, \quad \mathrm{N}, \mathrm{N}^{1}-$ dibenzylbisbenzimidazolesulphide $\mathbf{3 d}$ and $\mathrm{N}, \mathrm{N}^{1}-$ dibutylbisbenzimidazolesulphide $\mathbf{3 e}$ respectively. The structures of 3b-e have been assigned on the basis of their spectral and analytical data. (Pl. see Experimental Section for details).

3b (i.e., 3, $\mathrm{R}=\mathrm{R}^{1}=$ methyl) was also synthesized by condensing N -methyl-2chloromethylbenzimidazole $\mathbf{1 b}$ with 1-methyl-2-thiomethylbenzimidazole $\mathbf{2 b}$ in methanol using triethylamine (TEA) as a base under refluxing conditions for 3 hr . Similarly, 3c, 3d and 3e were also synthesized by the condensation of N-ethyl-2-thiomethylbenzimidazole 2c, N-benzyl-2thiomethylbenzimidazole $\mathbf{2 d}$ and N -n-butyl-2-thiomethylbenzimidazole $\mathbf{2 e}$ with the corresponding 2-(1-chloroethyl)-1-ethylbenzimidazole 1c, 2-(1-chloroethyl)-1benzylbenzimidazole 1d and 2-(1-chloroethyl)-1-n-butylbenzimidazole $\mathbf{1 e}$ respectively. The products obtained above have been found to be identical with reported sample with respect to m.p. and TLC.

Table I - Physical Data of the Synthesized Compounds 3a-e

S.No.	Substrate	Alkylating agent	Product		Yield (\%)	M.P ($\left.{ }^{(} \mathrm{C}\right)$
1.	3	-	3a		84	289
2.	3	DMS	3 b		82	283
3.	3	DES	3 c		84	275
4.	3	PhCH2 ${ }_{2}$	3 d		75	283
5.	3	$\mathrm{n}-\mathrm{BuBr}$		3 e	68	256

MeOH / TEA
Reflux / 3 hr

3
3f, $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathbf{3 g}, \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{1}=\mathrm{PhCH}_{2}$
3h, $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{1}=\mathrm{n}-\mathrm{Bu}$
3i, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{CH}_{3}$
3j, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{PhCH}_{2}$
3k, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{n}-\mathrm{Bu}$
31, $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}^{1}=\mathrm{CH}_{3}$
3m, $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}$
3n, $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}^{1}=\mathrm{n}-\mathrm{Bu}$
3o, $\mathrm{R}=\mathrm{n}-\mathrm{Bu}, \mathrm{R}^{1}=\mathrm{CH}_{3}$
3p, $\mathrm{R}=\mathrm{n}-\mathrm{Bu}, \mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}$
3q, $\mathrm{R}=\mathrm{n}-\mathrm{Bu}, \mathrm{R}^{1}=\mathrm{PhCH}_{2}$

3a, $R=R^{1}=H$
3b, $\mathrm{R}=\mathrm{R}^{1}=\mathrm{CH}_{3}$
3c, $\mathrm{R}=\mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}$
3d, $\mathrm{R}=\mathrm{R}^{1}=\mathrm{PhCH}_{2}$
$3 \mathrm{e}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{n}-\mathrm{Bu}$

Using this protocol, $\mathrm{N}, \mathrm{N}^{1}$-unsymmetrically disubstituted derivatives $\mathbf{3 f} \mathbf{- q}$ were prepared as follows:- Condensation of 2-(1-chloroethyl)-1-methylbenzimidazole 1b with 2thiomethylbenzimidazole 2a gave $\mathbf{3 r}$ followed by ethylation under PTC conditions gave $\mathbf{3 f}$. Similarly $\mathbf{3 g}$ was synthesized by condensing 2 -(1-chloroethyl)-1-methylbenzimidazole $\mathbf{1 b}$ with 2-thiomethylbenzimidazole 2a to obtain 3s followed by benzylation under PTC conditions or by condensing 2 -(1-chloroethyl)-1-H-benzimidazole 1a with N -benzyl-2-thiomethylbenzimidazole 2d to yield 3t followed by methylation under PTC conditions. Direct condensation of 2-(1-chloroethyl)-1-methylbenzimidazole $\mathbf{1 b}$ with N^{1}-benzyl-2-thiomethylbenzimidazole 2d also gave $\mathbf{3 g}$. Following the same procedure other compounds were prepared. The structures of $\mathbf{3 f} \mathbf{- q}$ have been established on the basis of IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and LC-MS $(\mathrm{Q}+1)$ Spectral data.

Table II - Physical Data of the Synthesized Compounds 3f-q

S.No.	Starting Materials Used		Product		Yield (\%)	M.P ($\left.{ }^{\circ} \mathrm{C}\right)$
1.	1 b	2c	3f		79	>300
2.	1 b	2d	3g		67	286
3.	1 b	2 e	3h		65	278
4.	1 c	2b	$3 \mathbf{1}$		72	>300
5.	1 c	2d	3j		64	272
6.	1 c	2 e	3k		66	282
7.	2d	1 b	31		60	258
8.	2d	1c	3m		66	>300
9.	2d	2 e	3n		53	269
10.	2 e	1 b	30		49	265
11.	2 e	1c	3p		59	>300
12.	2 e	2d		3q	68	255

EXPERIMENTAL SECTION

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. Thin-layer chromatography (TLC) performed on precoated with silica gel glass plates GF-254. IR Spectra were recorded on Jasca FT-IR 5300. ${ }^{1} \mathrm{H}$ NMR were recorded in $\mathrm{CDCl}_{3} / \mathrm{DMSO}$ using Varian $400-\mathrm{MHz}$ instrument, and Mass spectra were recorded on an Agilent LC-MS instrument giving only M^{+}values in $\mathrm{Q}+1$ mode.

Preparation of 3b-e from 3a $\left(\mathbf{R}=\mathbf{R}^{\mathbf{1}}=\mathbf{H}\right)$

A mixture of $\mathbf{3 a}(0.14 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 10 \mathrm{mmol})$, TBAB $(10 \mathrm{mg})$, DMF (20 mL) and two equivalents of appropriate alkylating agent were stirred at RT for 3 hr . At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed with water $(2 \times 10 \mathrm{~mL})$ and dried to obtain crude $\mathbf{3 b - e}$ which on recrystallization from a suitable solvent gave pure 3b-e.

1-methyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole, 3b
IR (KBr): No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{TMS}\right): 1.75\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.74$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of -SBz$), 3.89\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 6.76-7.59$ (complex, $\mathrm{m}, 8 \mathrm{H}$, aryl protons); MS (CI): m/z $337\left[\mathrm{M}^{+}+1\right]$.

1-ethyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole, 3c
IR (KBr): No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6} / \mathrm{TMS}\right)$: ð $1.18\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of ethyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right)$, $1.55\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of ethyl of -SBz$), 1.64\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.75\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ethyl of $\left.\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.84\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ethyl of -SBz$), 4.78\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right)$, 6.55-7.63 (complex, m, 8H, aryl protons); MS (CI): m/z $365\left[\mathrm{M}^{+}+1\right]$.

1-benzyl-2-((1-(1-benzyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole, 3d

IR (KBr): No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{TMS}\right)$: ð $1.68\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.92\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right)$, $4.68\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of benzyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 4.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$ of benzyl of -SBz), 7.27-8.36 (complex, m, 18H, 10 aromatic benzyl +8 H aryl protons); MS (CI): m/z $489\left[\mathrm{M}^{+}+1\right]$.

1-(n-butyl)-2-((1-(1-(n-butyl)-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole, 3e
IR (KBr): No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{TMS}\right)$: $ð 1.26\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of butyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $1.65\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.70\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 2.54(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ of butyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), 3.72 ($\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ of butyl of $\left.\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.45\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of butyl of SBz$), 1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ of butyl of -SBz$)$, $2.68\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ of butyl of -SBz$), 3.92\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.85(\mathrm{t}, 3 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ of butyl of -SBz), $4.88\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 6.68-7.68$ (complex, m, 8 H , aryl protons),; MS (CI): m/z $421\left[\mathrm{M}^{+}+1\right]$.

Alternative Procedure for Preparation of 3b-e

A mixture of $\mathbf{1}(\mathrm{R}=$ alkyl $)(0.87 \mathrm{~g}, 5 \mathrm{mmol}), \mathbf{2}\left(\mathrm{R}^{1}=\right.$ alkyl $)(0.95 \mathrm{~g}, 5 \mathrm{mmol})$, methanol $(20 \mathrm{~mL})$ and triethylamine $(0.46 \mathrm{~mL})$ was refluxed for 3 hr . At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed and dried to obtain crude 3b-e which on recrystallization from a suitable solvent gave pure 3b-e.

Preparation of $\mathbf{3 f - q}$ from $3\left(R=H, R^{1}=\right.$ alkyl $/ \mathbf{3}\left(\mathrm{R}=\right.$ alkyl, $\left.\mathrm{R}^{1}=\mathrm{H}\right)$ (General Procedure)
A mixture of $\mathbf{3}\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\right.$ alkyl $) / \mathbf{3}\left(\mathrm{R}=\right.$ alkyl, $\left.\mathrm{R}^{1}=\mathrm{H}\right)(0.14 \mathrm{~g}, 5 \mathrm{mM}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.6 \mathrm{~g}, 10 \mathrm{mM})$, TBAB (10 mg), DMF (20 mL) and alkylating agent $(5 \mathrm{mM})$ were stirred at RT for 3 hr . At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed with water and dried to obtain crude $\mathbf{3 f} \mathbf{- q}$ which on recrystallization from ethyl acetate gave pure $\mathbf{3 f - q}$.

1-ethyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole 3 f IR (KBr): No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}$ NMR($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{TMS}$): ð $3.65\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.68(\mathrm{~m}, 2 \mathrm{H}$, NCH_{2} of ethyl of -SBz), 3.94 ($\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}$ of ethyl of -SBz), 6.65-7.64 (complex, m, 8 H , aryl protons), $1.74\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 4.55\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.91\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right) ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z} 351$ $\left[\mathrm{M}^{+}+1\right]$.

1-benzyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole 3g IR (KBr): No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d $/ \mathrm{TMS})$: ð $3.70\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $4.62(\mathrm{~s}, 2 \mathrm{H}$, NCH_{2} of benzyl of SBz), $7.22-8.58$ (complex, $\mathrm{m}, 13 \mathrm{H}, 5 \mathrm{H}$ aromatic benzyl +8 H aryl protons), $1.65\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.85\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 4.65\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right)$, $\mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z} 413[\mathrm{M}+\mathrm{H}]^{+}$.

1-butyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole 3h IR (KBr) : No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6} / \mathrm{TMS}\right)$: ð $3.56\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), ð $1.32(\mathrm{t}, 2 \mathrm{H}$, NCH_{2} of butyl of -SBz), $1.65\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ of butyl of -SBz$), 2.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ of butyl of -SBz), $3.68\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of butyl of -SBz$), 6.69-7.68$ (complex, m, 8 H , aryl protons), $1.70\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.88\left(\mathrm{qt}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 4.63(\mathrm{~s}, 2 \mathrm{H},-$ CH_{2}), $\mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z} 379\left[\mathrm{M}^{+}+1\right]$.

1-ethyl-2-(1-((1-methyl-1H-benzimidazol-2-yl)methylthio)ethyl)-1H-benzimidazole 3i: IR (KBr) : No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6} / \mathrm{dMS}\right)$: ð $1.54\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of ethyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.76(\mathrm{t}$, $3 \mathrm{H},-\mathrm{CH}_{3}$ of ethyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of -SBz$), 4.78\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 6.65-7.58$ (complex, m, 8 H , aryl protons), $1.69\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.78\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right)$; MS (CI): m/z $351\left[\mathrm{M}^{+}+1\right]$.

1-benzyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole 3j: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6} / \mathrm{TMS}$): ð $1.50\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of ethyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $3.80\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ethyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $4.65\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of benzyl of SBz), 7.22-8.19 (complex, m, 13H,5H aromatic benzyl +8 H aryl protons), $4.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.79\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.85(\mathrm{~m}, 1 \mathrm{H},-$ CHCH_{3}); MS (CI): m/z $427\left[\mathrm{M}^{+}+1\right]$

1-butyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole 3k: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{TMS}$): $ð 1.55\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of ethyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $3.80\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$
of ethyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.38\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of butyl of -SBz$), 1.68\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ of butyl of -SBz$), 2.59\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ of butyl of -SBz$), 4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.72(\mathrm{t}, 3 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ of butyl of -SBz), 6.65-7.62 (complex, m, 8 H , aryl protons), 1.82 (d, $3 \mathrm{H},-$ $\left.\mathrm{CHCH}_{3}\right), 3.96\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right) ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z} 393\left[\mathrm{M}^{+}+1\right]$.

1-benzyl-2-(1-((1-methyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3I: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, ~ D M S O-d_{6} / \mathrm{TMS}$): ð $4.85\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of benzyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $3.70(\mathrm{~s}, 3 \mathrm{H},-$ NCH_{3} of -SBz), 7.30-8.26 (complex, $\mathrm{m}, 13 \mathrm{H}, 5 \mathrm{H}$ aromatic benzyl +8 H aryl protons), $1.72(\mathrm{~d}$, $\left.3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.88\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right) ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z} 413[\mathrm{M}+\mathrm{H}]^{+}$.

1-benzyl-2-(1-((1-ethyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3m: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO-d $/{ }_{6} / \mathrm{TMS}$): ð $4.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of benzyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.60(\mathrm{~m}, 2 \mathrm{H},-$ NCH_{2} of ethyl of -SBz), $3.90\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ethyl of -SBz) 7.62-8.34 (complex, m, 13H,5H aromatic benzyl +8 H aryl protons), $4.77\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.65\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.98(\mathrm{~m}, 1 \mathrm{H},-$ CHCH_{3}); MS (CI): m/z $427\left[\mathrm{M}^{+}+1\right]$.

1-benzyl-2-(1-((1-butyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3n: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{TMS}$): ð $4.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of benzyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.35(\mathrm{t}, 2 \mathrm{H},-$ NCH_{2} of butyl of -SBz), $1.67\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ of butyl of -SBz$), 2.56(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ of butyl of -SBz), $3.70\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of butyl of -SBz$), 6.62-7.62$ (complex, $\mathrm{m}, 8 \mathrm{H}$, aryl protons), $4.85\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.48\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.32(\mathrm{~m}, 1 \mathrm{H},-$ CHCH_{3}); MS (CI): m/z $455\left[\mathrm{M}^{+}+1\right]$.

1-butyl-2-(1-((1-methyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3o: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO-d $/{ }_{6} / \mathrm{TMS}$): ð $1.35\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.67(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 2.56\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.70$ ($\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ of butyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $4.88\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of SBz), 6.62-7.62 (complex, m, 8 H , aryl protons), $1.58\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.49\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right)$; MS (CI): m/z $379\left[\mathrm{M}^{+}+1\right]$

1-butyl-2-(1-((1-ethyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3p: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO-d ${ }_{6} / \mathrm{TMS}$): ð $1.35\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 1.67(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 2.56\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.70$ ($\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ of butyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $1.60\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of ethyl of -SBz$), 3.90$ $\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$ of ethyl of -SBz$), 4.92\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 6.62-7.62$ (complex, m, 8 H , aryl protons), $1.66\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.87\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right) ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z} 393\left[\mathrm{M}^{+}+1\right]$.

1-benzyl-2-((1-(1-butyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole 3q: No diagnostic peak in IR region $3500-3000 \mathrm{~cm}^{-1}$, indicating absence of -NH group; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO-d ${ }_{6} / \mathrm{TMS}$): ð $1.35\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of butyl of $-\mathrm{CHCH}_{3} \mathrm{Bz}$), $1.67(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 2.56\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 3.70$
($\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ of butyl of $\left.-\mathrm{CHCH}_{3} \mathrm{Bz}\right), 4.79\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 4.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right.$ of benzyl of -SBz), 7.30-8.26 (complex, m, $13 \mathrm{H}, 5 \mathrm{H}$ aromatic benzyl +8 H aryl protons), 1.79 (d, $\left.3 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.76\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right)$; MS (CI): m/z $455\left[\mathrm{M}^{+}+1\right]$.

Alternative route for preparation of $\mathbf{3 f - q}$

A mixture of N -alkyl-2-chloromethylbenzimidazole (1, $\mathrm{R}=$ alkyl $)(0.95 \mathrm{gr}, 5 \mathrm{mmol}), \mathrm{N}$ -alkyl-2-mercaptobenzimidazole $2\left(\mathrm{R}^{1}=\right.$ alkyl $)(5 \mathrm{mM})$, in methanol using triethylamine (TEA) as a base under reflux for 3 hr . $\mathbf{3 f - q}$ obtained above and found to be identical in m.p., m.m.p. and tlc with the corresponding derivatives prepared earlier in the route $3\left(R=H, R^{1}=\right.$ alkyl $) / 3(R=$ alkyl, $\mathrm{R}^{1}=\mathrm{H}$) to $\mathbf{3 f} \mathbf{- q}$.

CONCLUSION

In conclusion, we have developed a mild and simple method for the synthesis of a variety of symmetrical/unsymmetrical substituted bisbenzimidazole sulphides which are having biologically active compounds.

ACKNOWLEDGEMENT

The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad for providing facilities.

References

I. (a) G L Gravatt, B C Baugley, W R Wilson W.A.Denny, J Med Chem, 37, 4338 (1994),
(b) J. S. Kim, B. Gatto and L. F .Liu, Eur J Med Chem, 39, 992 (1996); (c) T Roth, M L Morningstr, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, J Med Chem, 40, 4199 (1997); (d) D A Horton, G T Bourne and M L Smythe, Chem Rev, 893 (2003).
II. (a) G L Gravatt, B C Baugley, W R Wilson and Denny W A, J Med Chem, 37, 4338 (1994); b) B Jayasankara and K M L Rai, Arkivoc 75 (2008); (c) T Roth, M L Morningstar, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, J Med Chem, 40, 4199 (1997).
III. H Hasegawa, N Tsuda and M Hasoya, Japanese Pat, 198 (1974); Chem Abstr, (1975), 156308.
IV. G Rovnyak, V L Narayana, R D Haugwitz and C M Cimarusti, US Pat, 014, (1973); Chem Abstr, 1974, 105596.
V. S C Bell and P H Wei, J Med Chem, 19, 524 (1976).
VI. D R Graber, R A Morge and Raenko, J Org Chem, 52, 4620 (1987).
VII. N I Korotkikh, G F Raenko and O P Shavaika, Chem Heterocycl compd, 31, 359 (1995).
VIII. A.Hiroshi, T. Ryosuke, I. Yutarao Y. Tsutomu, Org Lett. 15,3794 (2013).
IX. S. C. Bell and P.H.Wei, J Med Chem, 19, 524 (1976).
X. D. R. Graber, R. A. Morge and Raenko, J Org Chem, 52, 4620 (1987).
XI. H. Skolink, J. G. Miller and A.R.Day, J. Am. Chem. Soc., 65, 1854 (1943).
XII. J. A. V. Allan and B. D. Deacon, Org. Syn. Coll. 4, 569 (1963).

Received on 13 may 2014.

