#*L* http://heteroletters.org ISSN: 2231 – 3087(print) ISSN: 2230 – 9632 (Online) Coden HLEEAI Vol. 4: (3), 2014, 433-440

SYNTHESIS OF SYMMETRICAL/UNSYMMETRICAL 1-ALKYL-2-(((1-(1-ALKYL-1H-BENZIMIDAZOL-2-YL)ETHYL)THIO)METHYL)-1H-BENZIMIDAZOLE OF POTENTIAL PHARMACOLOGICAL INTEREST

S. Srinivas Rao*, Ch. Venkata Ramana Reddy & P.K. Dubey

Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering, Kukatpally, Hyderabad (A.P.), India – 500 085. E-mail: <u>seenu604@gmail.com</u>

ABSTRACT

2-(1-chloroethyl)-1H-benzimidazole **1a** on condensation with 2-thiomethylbenzimidazole **2a** in methanol using triethylamine as a base under reflux for 3 hr yielded 2-((1-(1H-benzimidazol-2-yl)ethyl)thiomethyl)-1H-benzimidazole **3a** which on alkylation using two equivalents of alkylating agent under PTC conditions gave N,N¹-dialkylbisbenzimidazolesulphides **3b-e**. Using this synthetic strategy, N,N¹- unsymmetricallydialkylbisbenzimidazolesulphides **3f-q** were prepared by condensing 2-(1-chloroethyl)-1H-benzimidazole **1a** with N¹-alkyl-2-thiomethylbenzimidazole **2b-e** to obtain **3** followed by alkylation under PTC conditions.

Keywords: 2-thiomethylbenzimidazole, 2-(1-chloroethyl)-1-alkyl-1H-benzimidazole, K₂CO₃, triethylamine, bisbenzimidazolesulphides.

INTRODUCTION

Benzimidazoles and pyrazoles are important moieties in various natural and synthetic compounds and also in medicinal chemistry^{I-IV}. Benzimidazole derivatives themselves play an important role with diverse types of pharmacological activities^{V-VIII}.

Abele et al reported^{IX} that the reaction of 2-mercaptobenzimidazole with bis(chloromethyl)dimethylsilane in the two-phase catalytic system of solid K_2CO_3 -18-crown-6-toluene gave tricyclic benzimidazole sulfides in 56 and 92% yields. Cecil et al studied^X that the presence of a sulfur atom as a sulfide in drugs provides a greater stability to the three dimensional structure of the molecule. It is also reported that benzimidazole sulphide is capable of inhibiting gastric acid^{XI} secretion *in vivo*. So in this connection, herein is reported the synthesis of sulphur containing benzimidazoles, more specifically those of unsymmetrical bisbenzimidazole sulphides, which are the heterocyclic deoxy analogues of the well-known anti-ulcer agent and the proton pump inhibitor – Omeprazole^{XII}.

RESULTS AND DISCUSSION

2-(1-chloroethyl)-1H-benzimidazole 1a (*i.e.*, 1, R=H) on Condensation with 2thiomethylbenzimidazole 2a in methanol using triethylamine (TEA) as a base under reflux for 3 hr gave 2-((1-(1H-benzimidazol-2-yl)ethyl)thio)-1H-benzimidazole 3a. 3a on methylation using two equivalents of dimethylsulphate in dimethylformamide (DMF) as a solvent and K₂CO₃ as a base using tetrabutylammonium bromide (TBAB) as phase transfer catalyst (PTC) at RT for 3 hr gave N_1N^1 - dimethylbisbenzimidazolesulphide **3b**. Using this strategy, the reactions of **3a** was also performed with two equivalents of each of diethyl sulphate, benzyl chloride and n-butyl N,N¹-diethylbisbenzimidazolesulphide N, N^{1} obtain bromide to 3c. dibenzylbisbenzimidazolesulphide **3d** and $N_{1}N^{1}$ - dibutylbisbenzimidazolesulphide 3e respectively. The structures of 3b-e have been assigned on the basis of their spectral and analytical data. (Pl. see Experimental Section for details).

3b (*i.e.*, **3**, $R=R^1=methyl)$ was also synthesized by condensing N-methyl-2chloromethylbenzimidazole **1b** with 1-methyl-2-thiomethylbenzimidazole **2b** in methanol using triethylamine (TEA) as a base under refluxing conditions for 3 hr. Similarly, **3c**, **3d** and **3e** were also synthesized by the condensation of N-ethyl-2-thiomethylbenzimidazole **2c**, N-benzyl-2thiomethylbenzimidazole **2d** and N-n-butyl-2-thiomethylbenzimidazole **2e** with the corresponding 2-(1-chloroethyl)-1-ethylbenzimidazole **1c**, 2-(1-chloroethyl)-1benzylbenzimidazole **1d** and 2-(1-chloroethyl)-1-n-butylbenzimidazole **1e** respectively. The products obtained above have been found to be identical with reported sample with respect to m.p. and TLC.

S.No.	Substrate	Alkylating agent	Product		Yield (%)	M.P (⁰ C)
1.	3	-	3a		84	289
2.	3	DMS	3b		82	283
3.	3	DES	3c		84	275
4.	3	PhCH ₂ Cl	3d		75	283
5.	3	n-BuBr		3e	68	256

Table I - Physical Data of the Synthesized Compounds 3a-e

Using this protocol, N,N¹-unsymmetrically disubstituted derivatives **3f-q** were prepared as follows:- Condensation of 2-(1-chloroethyl)-1-methylbenzimidazole **1b** with 2-thiomethylbenzimidazole **2a** gave **3r** followed by ethylation under PTC conditions gave **3f**. Similarly **3g** was synthesized by condensing 2-(1-chloroethyl)-1-methylbenzimidazole **1b** with 2-thiomethylbenzimidazole **2a** to obtain **3s** followed by benzylation under PTC conditions or by condensing 2-(1-chloroethyl)-1-H-benzimidazole **1a** with N-benzyl-2-thiomethylbenzimidazole **2d** to yield **3t** followed by methylation under PTC conditions. Direct condensation of 2-(1-chloroethyl)-1-methylbenzimidazole **1b** with N¹-benzyl-2-thiomethylbenzimidazole **2d** also gave **3g**. Following the same procedure other compounds were prepared. The structures of **3f-q** have been established on the basis of IR, ¹H-NMR and LC-MS (Q+1) Spectral data.

ð

S.No.	Starting Materials Used		Product		Yield (%)	$M.P(^{0}C)$
1.	1b	2c	3f		79	>300
2.	1b	2d	3g		67	286
3.	1b	2e	3h		65	278
4.	1c	2b	3i		72	>300
5.	1c	2d	3j		64	272
6.	1c	2e	3k		66	282
7.	2d	1b	31		60	258
8.	2d	1c	3m		66	>300
9.	2d	2e	3n		53	269
10.	2e	1b	30		49	265
11.	2e	1 c	3p		59	>300
12.	2e	2d		3q	68	255

Table II - Physical Data of the Synthesized Compounds 3f-q

EXPERIMENTAL SECTION

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. Thin-layer chromatography (TLC) performed on precoated with silica gel glass plates GF-254. IR Spectra were recorded on Jasca FT-IR 5300. ¹H NMR were recorded in CDCl₃ / DMSO using Varian 400-MHz instrument, and Mass spectra were recorded on an Agilent LC-MS instrument giving only M^+ values in Q+1 mode.

Preparation of 3b-e from 3a (R=R¹=H)

A mixture of **3a** (0.14 g, 5 mmol), K_2CO_3 (1.3 g, 10 mmol), TBAB (10 mg), DMF (20 mL) and two equivalents of appropriate alkylating agent were stirred at RT for 3 hr. At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed with water (2×10 mL) and dried to obtain crude **3b-e** which on recrystallization from a suitable solvent gave pure **3b-e**.

1-methyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole, 3b

IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): 1.75 (d, 3H, -CHCH₃), 4.74 (s, 2H, -CH₂), 3.74 (s, 3H, -NCH₃ of -CHCH₃Bz), 3.79 (s, 3H, -NCH₃ of -SBz), 3.89 (m, 1H, -CHCH₃), 6.76-7.59 (complex, m, 8H, aryl protons); MS (CI): m/z 337 [M⁺⁺+1].

1-ethyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole, 3c

IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.18 (m, 2H, -NCH₂ of ethyl of – CHCH₃Bz), 1.55 (m, 2H, -NCH₂ of ethyl of -SBz), 1.64 (d, 3H, -CHCH₃), 3.75 (t, 3H, -CH₃ of ethyl of – CHCH₃Bz), 3.84 (m, 1H, -CHCH₃), 3.87 (s, 3H, -CH₃ of ethyl of -SBz), 4.78 (s, 2H, -CH₂), 6.55-7.63 (complex, m, 8H, aryl protons); MS (CI): m/z 365 [M⁺⁺1].

1-benzyl-2-((1-(1-benzyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole, 3d

IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.68 (d, 3H, -CHCH₃), 3.92 (m, 1H, -CHCH₃), 4.68 (s, 2H, -NCH₂ of benzyl of – CHCH₃Bz), 4.82 (s, 2H, -CH₂), 5.25 (s, 2H, NCH₂ of benzyl of -SBz), 7.27-8.36 (complex, m, 18H, 10 aromatic benzyl + 8H aryl protons); MS (CI): m/z 489 [M⁺+1].

1-(n-butyl)-2-((1-(1-(n-butyl)-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole, 3e

IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.26 (t, 2H, -NCH₂ of butyl of -CHCH₃Bz), 1.65 (m, 2H, -NCH₂CH₂ of butyl of - CHCH₃Bz), 1.70 (d, 3H, -CHCH₃), 2.54 (m, 2H, -NCH₂CH₂CH₂ of butyl of - CHCH₃Bz), 3.72 (t, 3H, -NCH₂CH₂CH₂CH₃ of butyl of - CHCH₃Bz), 1.45 (t, 2H, -NCH₂ of butyl of SBz), 1.79 (m, 2H, -NCH₂CH₂CH₂ of butyl of - SBz), 2.68 (m, 2H, -NCH₂CH₂CH₂ of butyl of - SBz), 4.88 (s, 2H, -CH₂), 6.68-7.68 (complex, m, 8H, aryl protons),; MS (CI): m/z 421 [M⁺⁺1].

Alternative Procedure for Preparation of 3b-e

A mixture of 1 (R=alkyl) (0.87 g, 5 mmol), 2 (R^1 =alkyl) (0.95 g, 5 mmol), methanol (20 mL) and triethylamine (0.46 mL) was refluxed for 3 hr. At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed and dried to obtain crude **3b-e** which on recrystallization from a suitable solvent gave pure **3b-e**.

Preparation of 3f-q from 3 (R=H, R¹=alkyl) / **3** (R=alkyl, R¹=H) (General Procedure)

A mixture of **3** (R=H, R¹=alkyl)/ **3** (R=alkyl, R¹=H) (0.14 g, 5 mM), K₂CO₃ (1.6 g, 10 mM), TBAB (10 mg), DMF (20 mL) and alkylating agent (5 mM) were stirred at RT for 3 hr. At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed with water and dried to obtain crude **3f-q** which on recrystallization from ethyl acetate gave pure **3f-q**.

1-ethyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole 3f

IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H NMR(400 MHz, DMSO-d₆/ TMS): ð 3.65 (s, 3H, -NCH₃ of - CHCH₃Bz), 1.68 (m, 2H, -NCH₂ of ethyl of –SBz), 3.94 (t, 3H, - CH₃ of ethyl of –SBz), 6.65-7.64 (complex, m, 8H, aryl protons), 1.74 (d, 3H, -CHCH₃), 4.55 (s, 2H, -CH₂), 3.91 (m, 1H, -CHCH₃); MS (CI): m/z 351 [M⁻⁺+1].

1-benzyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole 3g

IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 3.70 (s, 3H, -NCH₃ of - CHCH₃Bz), 4.62 (s, 2H, -NCH₂ of benzyl of SBz), 7.22-8.58 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.65 (d, 3H, -CHCH₃), 3.85 (m, 1H, -CHCH₃), 4.65 (s, 2H, -CH₂),; MS (CI): m/z 413 [M+H]⁺.

1-butyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole 3h IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 3.56 (s, 3H, -NCH₃ of - CHCH₃Bz), ð 1.32 (t, 2H, - NCH₂ of butyl of -SBz), 1.65 (m, 2H, -NCH₂CH₂ of butyl of -SBz), 2.54 (m, 2H, - NCH₂CH₂CH₂CH₂ of butyl of -SBz), 3.68 (t, 3H, -NCH₂CH₂CH₂CH₃ of butyl of -SBz), 6.69-7.68 (complex, m, 8H, aryl protons), 1.70 (d, 3H, -CHCH₃), 3.88 (qt, 1H, -CHCH₃), 4.63 (s, 2H, - CH₂),; MS (CI): m/z 379 [M⁺⁺+1].

1-ethyl-2-(1-((1-methyl-1H-benzimidazol-2-yl)methylthio)ethyl)-1H-benzimidazole 3i: IR (KBr): No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.54 (m, 2H, -NCH₂ of ethyl of - CHCH₃Bz), 3.76 (t, 3H, -CH₃ of ethyl of - CHCH₃Bz), 3.53 (s, 3H, -NCH₃ of -SBz), 4.78 (s, 2H, -CH₂),6.65-7.58 (complex, m, 8H, aryl protons), 1.69 (d, 3H, -CHCH₃), 3.78 (m, 1H, -CHCH₃); MS (CI): m/z 351 [M⁺⁺+1].

1-benzyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole 3j: No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.50 (m, 2H, -NCH₂ of ethyl of - CHCH₃Bz), 3.80 (t, 3H, -CH₃ of ethyl of - CHCH₃Bz), 4.65 (s, 2H, -NCH₂ of benzyl of SBz), 7.22-8.19 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 4.82 (s, 2H, -CH₂), 1.79 (d, 3H, -CHCH₃), 3.85 (m, 1H, -CHCH₃); MS (CI): m/z 427 [M⁺+1]

1-butyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)ethyl)methylthio)-1H-benzimidazole 3k: No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.55 (m, 2H, -NCH₂ of ethyl of - CHCH₃Bz), 3.80 (t, 3H, -CH₃

of ethyl of - CHCH₃Bz), 1.38 (t, 2H, -NCH₂ of butyl of -SBz), 1.68 (m, 2H, -NCH₂CH₂ of butyl of -SBz), 2.59 (m, 2H, -NCH₂CH₂CH₂ of butyl of -SBz), 4.80 (s, 2H, -CH₂), 3.72 (t, 3H, -NCH₂CH₂CH₂CH₂CH₃ of butyl of -SBz), 6.65-7.62 (complex, m, 8H, aryl protons), 1.82 (d, 3H, -CHCH₃), 3.96 (m, 1H, -CHCH₃); MS (CI): m/z 393 [M⁺⁺+1].

1-benzyl-2-(1-((1-methyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 31: No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 4.85 (s, 2H, -NCH₂ of benzyl of - CHCH₃Bz), 3.70 (s, 3H, - NCH₃ of -SBz), 7.30-8.26 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.72 (d, 3H, -CHCH₃), 4.91 (s, 2H, -CH₂), 3.88 (m, 1H, -CHCH₃); MS (CI): m/z 413 [M+H]⁺.

1-benzyl-2-(1-((1-ethyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3m: No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 4.82 (s, 2H, -NCH₂ of benzyl of - CHCH₃Bz), 1.60 (m, 2H, - NCH₂ of ethyl of -SBz), 3.90 (t, 3H, -CH₃ of ethyl of -SBz) 7.62-8.34 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 4.77 (s, 2H, -CH₂), 1.65 (d, 3H, -CHCH₃), 3.98 (m, 1H, - CHCH₃); MS (CI): m/z 427 [M⁺+1].

1-benzyl-2-(1-((1-butyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3n: No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 4.82 (s, 2H, -NCH₂ of benzyl of - CHCH₃Bz), 1.35 (t, 2H, -NCH₂ of butyl of -SBz), 1.67 (m, 2H, -NCH₂CH₂ of butyl of -SBz), 2.56 (m, 2H, -NCH₂CH₂CH₂CH₂ of butyl of -SBz), 3.70 (t, 3H, -NCH₂CH₂CH₂CH₃ of butyl of -SBz), 6.62-7.62 (complex, m, 8H, aryl protons), 4.85 (s, 2H, -CH₂), 1.48 (d, 3H, -CHCH₃), 3.32 (m, 1H, -CHCH₃); MS (CI): m/z 455 [M⁺⁺+1].

1-butyl-2-(1-((1-methyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3o: No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.35 (t, 2H, -NCH₂ of butyl of – CHCH₃Bz), 1.67 (m, 2H, -NCH₂CH₂ of butyl of – CHCH₃Bz), 2.56 (m, 2H, -NCH₂CH₂CH₂ of butyl of – CHCH₃Bz), 3.70 (t, 3H, -NCH₂CH₂CH₂CH₂CH₂CH₂CH₃ of butyl of – CHCH₃Bz), 4.88 (s, 2H, -CH₂), 3.72 (s, 3H, -NCH₃ of -SBz), 6.62-7.62 (complex, m, 8H, aryl protons), 1.58 (d, 3H, -CHCH₃), 3.49 (m, 1H, -CHCH₃); MS (CI): m/z 379 [M⁺+1]

1-butyl-2-(1-((1-ethyl-1H-benzimidazol-2-yl) methylthio)ethyl)-1H-benzimidazole 3p: No diagnostic peak in IR region $3500 - 3000 \text{ cm}^{-1}$, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.35 (t, 2H, -NCH₂ of butyl of – CHCH₃Bz), 1.67 (m, 2H, -NCH₂CH₂ of butyl of – CHCH₃Bz), 2.56 (m, 2H, -NCH₂CH₂CH₂ of butyl of – CHCH₃Bz), 3.70 (t, 3H, -NCH₂CH₂CH₂CH₂CH₃ of butyl of – CHCH₃Bz), 1.60 (m, 2H, -NCH₂ of ethyl of -SBz), 3.90 (t, 3H, -NCH₃ of ethyl of –SBz), 4.92 (s, 2H, -CH₂),6.62-7.62 (complex, m, 8H, aryl protons), 1.66 (d, 3H, -CHCH₃), 3.87 (m, 1H, -CHCH₃); MS (CI): m/z 393 [M⁺⁺1].

1-benzyl-2-((1-(1-butyl-1H-benzimidazol-2-yl)ethyl) methylthio)-1H-benzimidazole 3q: No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): ð 1.35 (t, 2H, -NCH₂ of butyl of – CHCH₃Bz), 1.67 (m, 2H, -NCH₂CH₂ of butyl of – CHCH₃Bz), 2.56 (m, 2H, -NCH₂CH₂CH₂ of butyl of – CHCH₃Bz), 3.70

(t, 3H, -NCH₂CH₂CH₂CH₃ of butyl of – CHCH₃Bz), 4.79 (s, 2H, -CH₂),4.82 (s, 2H, -NCH₂ of benzyl of - SBz), 7.30-8.26 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.79 (d, 3H, -CHCH₃), 3.76 (m, 1H, -CHCH₃); MS (CI): m/z 455 [M⁺⁺+1].

Alternative route for preparation of 3f-q

A mixture of N-alkyl-2-chloromethylbenzimidazole (1, R=alkyl) (0.95 gr, 5 mmol), N-alkyl-2-mercaptobenzimidazole 2 (R^1 =alkyl) (5 mM), in methanol using triethylamine (TEA) as a base under reflux for 3 hr. **3f-q** obtained above and found to be identical in m.p., m.m.p. and tlc with the corresponding derivatives prepared earlier in the route 3 (R=H, R¹=alkyl) / 3 (R=alkyl, R¹=H) to **3f-q**.

CONCLUSION

In conclusion, we have developed a mild and simple method for the synthesis of a variety of symmetrical/unsymmetrical substituted bisbenzimidazole sulphides which are having biologically active compounds.

ACKNOWLEDGEMENT

The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad for providing facilities.

References

- I. (a) G L Gravatt, B C Baugley, W R Wilson W.A.Denny, J Med Chem, 37, 4338 (1994),
 (b) J. S. Kim, B. Gatto and L. F .Liu, Eur J Med Chem, 39, 992 (1996); (c) T Roth,
 M L Morningstr, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, J Med Chem, 40, 4199 (1997); (d) D A Horton, G T Bourne and M L Smythe, Chem Rev, 893 (2003).
- II. (a) G L Gravatt, B C Baugley, W R Wilson and Denny W A, J Med Chem, 37, 4338 (1994); b) B Jayasankara and K M L Rai, Arkivoc 75 (2008); (c) T Roth, M L Morningstar, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, J Med Chem, 40, 4199 (1997).
- III. H Hasegawa, N Tsuda and M Hasoya, Japanese Pat, 198 (1974); Chem Abstr, (1975), 156308.
- IV. G Rovnyak, V L Narayana, R D Haugwitz and C M Cimarusti, US Pat, 014, (1973); Chem Abstr, 1974, 105596.
- V. S C Bell and P H Wei, J Med Chem, 19, 524 (1976).
- VI. D R Graber, R A Morge and Raenko, J Org Chem, 52, 4620 (1987).
- VII. N I Korotkikh, G F Raenko and O P Shavaika, *Chem Heterocycl compd*, 31, 359 (1995).
- VIII. A.Hiroshi, T. Ryosuke, I. Yutarao Y. Tsutomu, Org Lett. 15,3794 (2013).
- IX. S. C. Bell and P.H.Wei, J Med Chem, 19, 524 (1976).
- X. D. R. Graber, R. A. Morge and Raenko, J Org Chem, 52, 4620 (1987).
- XI. H. Skolink, J. G. Miller and A.R.Day, J. Am. Chem. Soc., 65, 1854 (1943).
- XII. J. A. V. Allan and B. D. Deacon, Org. Syn. Coll. 4, 569 (1963).

Received on 13 may 2014.